An Overview of Linux on Assabet

August 18, 2000

Justin Seger (jseger@scds.com)
Table of Contents

31. Introduction

32. Open Source Community Resources

32.1 Mailing Lists

52.2 Web Pages

62.3 FTP Sites

73. Toolchain Issues

73.1 Binary Formats

83.2 Cross Compilers

103.3 Native Compilers

103.4 Library Issues

114. Terminal Software

135. Bootloader Issues

135.1 Angel Debug Monitor

145.2 Blob – The LART Boot Loader

156. Kernel Issues

187. Ramdisk Issues

188. Internal Resources

199. Personal Contact Information

1. Introduction

This document was created to provide a repository of information related to running Linux on an Assabet (SA1110 Development Board) system. It is by no means a complete guide to using Linux; however it attempts to explain what most of the components of a functioning Linux system are, where to get them, how to build them, and how to use them. It also provides links to many of the sites on the Internet where this information was originally obtained.

2. Open Source Community Resources

The community of developers working on Linux, and more specifically Linux support for the Assabet provides a wide range of useful resources for developers. This section provides links to many of these resources.

2.1 Mailing Lists

Mailing lists are where the majority of the discussions regarding the development and use of Linux take place.

	List
	handhelds@handhelds.org

	Archive
	http://www.handhelds.org/pipermail/handhelds/

	Subscribe
	Send mail to handhelds-request@handhelds.org with "subscribe" in the subject line

	Purpose
	General discussion of software on handheld and wearable computers: e.g. applications software portable across operating systems, etc.

	List
	linux@handhelds.org

	Archive
	http://www.handhelds.org/pipermail/linux/

	Subscribe
	Send mail to linux-request@handhelds.org with "subscribe" in the subject line

	Purpose
	Architecture independent Linux kernel issues on handheld and wearable computers

	List
	netbsd@handhelds.org

	Archive
	http://www.handhelds.org/pipermail/netbsd/

	Subscribe
	Send mail to netbsd-request@handhelds.org with "subscribe" in the subject line

	Purpose
	NetBSD issues on handheld and wearable computers

	List
	ipaq@handhelds.org

	Archive
	http://www.handhelds.org/pipermail/ipaq/

	Subscribe
	Send mail to ipaq-request@handhelds.org with "subscribe" in the subject line

	Purpose
	iPAQ H3600 specific discussions

	List
	sa1100-linux@pa.dec.com

	Archive
	None known

	Subscribe
	Send mail to sa1100-linux-request@pa.dec.com with "subscribe" in the message body

	Purpose
	Linux on Intel SA11XX processors

	List
	linuxce-devel@linuxce.org

	Archive
	http://mailman.bok.net/pipermail/linuxce-devel/

	Subscribe
	http://mailman.bok.net/mailman/listinfo/linuxce-devel

	Purpose
	Discussions about porting Linux to handheld devices

	List
	linux-arm-announce@lists.arm.linux.org.uk

	Archive
	ftp://ftp.arm.linux.org.uk/pub/armlinux/lists/linux-arm-announce

	Subscribe
	Send mail to majordomo@lists.arm.linux.org.uk with “subscribe linux-arm-announce” in the message body

	Purpose
	This is a moderated mailing list for announces to do with ARM Linux.

	List
	linux-arm-kernel@lists.arm.linux.org.uk

	Archive
	ftp://ftp.arm.linux.org.uk/pub/armlinux/lists/linux-arm-kernel

	Subscribe
	Send mail to majordomo@lists.arm.linux.org.uk with “subscribe linux-arm-kernel” in the message body

	Purpose
	This is the mailing list to discuss the following areas:

· Kernel development/features

· Closely-related Kernel tools (eg, lspci)

· Booting kernels, eg, EBSA285 BIOS

	List
	Linux-arm@lists.arm.linux.org.uk

	Archive
	ftp://ftp.arm.linux.org.uk/pub/armlinux/lists/linux-arm

	Subscribe
	Send mail to majordomo@lists.arm.linux.org.uk with “subscribe linux-arm” in the message body

	Purpose
	This is the main ARM Linux mailing list for bug reports, problems and questions.

	List
	Other various Linux mailing lists

	Archive
	See http://www.linux.org/docs/index.html for more info

	Subscribe
	See http://www.linux.org/docs/index.html for more info

	Purpose
	See http://www.linux.org/docs/index.html for more info

	List
	lart@lart.tudelft.nl

	Archive
	http://www.lart.tudelft.nl/list/list.php3

	Subscribe
	Send mail to majordomo@lart.tudelft.nl with “subscribe lart” in the message body

	Purpose
	Any discussion related to the LART project.

NOTE: This is most useful for Assabet users for support of the ‘blob’ boot loader. It is maintained by the LART project.

2.2 Web Pages

	Web Page
	http://www.cs.cmu.edu/~wearable/software/assabet.html

	Description
	The CMU wearable computing project support page for Assabet. They provide a good set of instructions for installing Linux on an Assabet. They also implemented most of the Linux PCMCIA support for the Assabet.

	Web Page
	http://www.arm.linux.org.uk/

	Description
	This is the ARM Linux homepage. It contains a large variety of information about ARM linux. There isn’t much StrongARM specific information there, but it’s a good starting point.

	Web Page
	http://developer.intel.com/design/strong/quicklist/eval-plat/sa-1110.htm

	Description
	Intel’s Developer page for the Assabet.

	Web Page
	http://www.handhelds.org/

	Description
	“Our goal is to encourage and facilitate the creation of open source software for use on handheld and wearable computers. We welcome participation and sponsorship by individuals, groups and companies seeking to further this goal.”

Right now this site is very iPAQ and Linux specific, however they plan to change that over time.

	Web Page
	http://www.lart.tudelft.nl/

	Description
	The LART project home page. This is an “open hardware” initiative to create a freely available board design based on an SA1100 processor. They also wrote the ‘blob’ bootloader which allows LART (and now Assabet) systems to boot Linux from flash.

	Web Page
	http://www.objsw.com/CrossGCC/

	Description
	Frequently Asked Questions about GNU Cross Compilers. This site is very useful for sorting out many of the cross compiling issues.

	Web Page
	http://busybox.lineo.com/

	Description
	BusyBox is an Open Source utility designed to minimize the space required for a basic Linux installation. This utility is used by many of the available ramdisks.

	Web Page
	http://www.linux-mtd.infradead.org/

	Description
	This is a group working on a generic Linux subsystem for memory devices especially Flash devices.

NOTE: As of Linux kernel release 2.4.0-test5-rmk1-np1, an Assabet’s StrataFlash does NOT use the MTD subsystem. There are currently plans to port the Assabet driver to MTD; however it hasn’t happened yet.

	Web Page
	http://www.linux.org/

	Description
	The Linux home page.

	Web Page
	http://www.kernel.org/

	Description
	The Linux Kernel Archives – A great source for information about Linux kernel releases

	Web Page
	http://www.netwinder.org/

	Description
	The Netwinder project. This site is geared towards people running Linux on Netwinder’s; however it is quite useful for all SA11XX systems.

	Web page
	http://xcopilot.cuspy.com

	Description
	This site hosts the version of “xcopilot” (a PalmPilot emulator) that can be compiled to run under Linux on an Assabet.

	Web page
	http://sources.redhat.com/

	Description
	This site (formerly known as sourceware.cygnus.com) hosts a variety of open source projects. Among others, it hosts cygmon, cygwin, gcc, binutils, and glibc.

	Web page
	http://www.viewml.com/

	Description
	An open source browser for Microwindows

	Web page
	http://www.microwindows.org/

	Description
	A minimal windowing system designed for embedded systems. It offers programs a choice of API’s, one geared for Windows developers, and another for X-windows developers.

	Web page
	http://www.pocketlinux.com/

	Description
	“A complete GPL’ed operating system which can run on just about any machine that can run Linux. Our primary development targets have been the Vtech Helio, and more recently, the Compaq iPAQ”

NOTE: This project is being sponsored by Transvirtual

2.3 FTP Sites

	FTP Site
	ftp://ftp.kernel.org/

	Description
	Linux kernel home FTP site. See http://www.kernel.org/mirrors/ for mirror sites

	FTP Site
	ftp://ftp.netwinder.org/users/n/nico/

	Description
	Nicolas Pitre’s FTP site. This contains all of his Linux patches for SA11XX’s, the angelboot utility, the Jflash-linux port, his ramdisk, and many other useful files.

	FTP Site
	ftp://ftp.arm.linux.org.uk/pub/armlinux/source/kernel-patches/

	Description
	This is the repository for Russell King’s ARM-Linux patches.

	FTP Site
	ftp://ftp.netwinder.org/users/c/chagas/arm-linux-cross/

	Description
	Jason Chagas’s repository of ARM-Linux cross tools.

NOTE: Future version of these may be available from Justin Seger’s FTP site

	FTP Site
	ftp://ftp.netwinder.org/users/j/jseger

	Description
	This is Justin Seger’s FTP site on netwinder.org. It should contain the latest versions of cross-tools RPM’s, bootloader kits, and other useful utilities.

3. Toolchain Issues

In the past, one of the biggest stumbling blocks in getting started with Linux development on StrongARM systems has been getting a working tool chain (compiler, assembler, linker, etc…) installed. This section summarizes many of the issues associated with building and using a toolchain.

3.1 Binary Formats

There are a wide variety of binary formats out there, and the support for them varies greatly. Linux (and many other operating systems) have recently standardized on the ELF binary format. Previous versions of Linux used the a.out format; however this is poorly supported these days, and should not be used unless absolutely necessary for an application.

An extension of this problem is finding the right toolchain to use for your application. Currently there are a few different toolchains that relate to ELF binaries under linux:

	Toolchain
	Description

	strongarm-elf
	Typically built from the SA1 snapshot from Cygnus dated September 1999. This is used to create ELF binaries for StrongARM 1 processors.

	strongarm2-elf
	Built from one of the SA2 snapshots from Cygnus. This is used to create ELF binaries for StrongARM 2 processors.

	arm-elf
	Can either be built from open source, SA1 snapshot, or SA2 snapshot. If built from open source, this requires binutils, gcc, newlib. This is used to create ELF binaries for ARM v4 little endian systems.

	arm-linux
	Best built from open source tree, however it is buildable from the Cygnus snapshots using a few hacks. Jason Chagas should have a copy of a procedure used to build this from the Cygnus snapshots. To build under Linux from open source, use the script included later in this document.

NOTE: Binaries are available for RedHat systems at: ftp://ftp.netwinder.org/users/c/chagas/arm-linux-cross

The problem with ELF is that different toolchains are needed for "different" ELF's. I don't know if this is an actual format issue, or if this is just do to the compiler inserting syscall's into the resulting code. When I was trying to test an arm-elf compiler, I found that it would not compile the Linux kernel (failing in linking stages), however the arm-linux compiler built form the same source worked fine.

This means that for most work on Linux, you should use an “arm-linux” toolchain.

3.2 Cross Compilers

Cross compiling allows one to build binaries for a target system (in this case arm-linux) from a host system (in this case i686-linux). Obtained a “cross toolchain” can be a difficult process. For users of RedHat Linux 6.1 or higher, a pre-built toolchain is available at: ftp://ftp.netwinder.org/users/c/chagas/arm-linux-cross
To create your own toolchain from source, use the following script:

Execute the following commands at a prompt on your system.

Change the /home/jseger/arm_work shown below to a directory that you want to do the build in

ARM_WORK_DIR=/home/jseger/arm_work

Chane the /usr/local/arm-linux shown below to a directory that you want to install the tools in

ARM_INSTALL_DIR=/usr/local/arm-linux

PATH=$ARM_INSTALL_DIR/bin:$PATH

mkdir -p $ARM_WORK_DIR/sources

mkdir -p $ARM_INSTALL_DIR

#Download all of the sources listed above into $ARM_WORK_DIR/sources

#If you would like this script to download them automatically, uncomment the following line

#DOWNLOAD_SOURCES=YES

if [“x$DOWNLOAD_SOURCES” = “xYES”]; then

cd $ARM_WORK_DIR/sources

echo Downloading sources using lynx - This may take a while

lynx -dump ftp://aeneas.mit.edu/pub/gnu/binutils/binutils-2.10.tar.gz > binutils-2.10.tar.gz

lynx -dump ftp://aeneas.mit.edu/pub/gnu/gcc/gcc-2.95.2.tar.gz > gcc-2.95.2.tar.gz

lynx -dump ftp://ftp.netwinder.org/users/p/philb/gcc-2.95.2-diff-991022.gz > gcc-2.95.2-diff-991022.gz

lynx -dump ftp://ftp.netwinder.org/users/j/jseger/gcc-2.95.2-diff-991022-inhibit_libc.gz > gcc-2.95.2-diff-991022-inhibit_libc.gz

lynx -dump ftp://aeneas.mit.edu/pub/gnu/glibc/glibc-2.1.3.tar.gz > glibc-2.1.3.tar.gz

lynx -dump ftp://aeneas.mit.edu/pub/gnu/glibc/glibc-crypt-2.1.tar.gz > glibc-crypt-2.1.tar.gz

lynx -dump ftp://aeneas.mit.edu/pub/gnu/glibc/glibc-linuxthreads-2.1.3.tar.gz > glibc-linuxthreads-2.1.3.tar.gz

lynx -dump ftp://ftp.kernel.org/pub/linux/kernel/v2.4/linux-2.4.0-test2.tar.gz > linux-2.4.0-test2.tar.gz

lynx -dump ftp://ftp.kernel.org/pub/linux/kernel/people/alan/2.4.0test/patch-2.4.0test2-ac1.gz > patch-2.4.0test2-ac1.gz

lynx -dump ftp://ftp.arm.linux.org.uk/pub/armlinux/source/kernel-patches/v2.4/patch-2.4.0-test2-ac1-rmk2.gz > patch-2.4.0-test2-ac1-rmk2.gz

lynx -dump ftp://ftp.netwinder.org/users/n/nico/diff-2.4.0-test2-ac1-rmk2-np3.gz > diff-2.4.0-test2-ac1-rmk2-np3.gz

fi

cd $ARM_WORK_DIR

mkdir -p src build

tar -xzvf sources/binutils-2.10.tar.gz --directory=src

tar -xzvf sources/gcc-2.95.2.tar.gz --directory=src

tar -xzvf sources/linux-2.4.0-test2.tar.gz --directory=src

tar -xzvf sources/glibc-2.1.3.tar.gz --directory=src

tar -xzvf sources/glibc-crypt-2.1.tar.gz --directory=src/glibc-2.1.3

tar -xzvf sources/glibc-linuxthreads-2.1.3.tar.gz --directory=src/glibc-2.1.3

gzip -dc sources/gcc-2.95.2-diff-991022.gz | patch -d src/gcc-2.95.2 -p0

#NOTE: This will produce two error messages: “Hunk #1 FAILED at 1.” These are safe to ignore

gzip -dc sources/gcc-2.95.2-diff-991022-inhibit_libc.gz | patch -d src/gcc-2.95.2 -p0

gzip -dc sources/patch-2.4.0test2-ac1.gz | patch -p1 -d src/linux

gzip -dc sources/patch-2.4.0-test2-ac1-rmk2.gz | patch -p1 -d src/linux

gzip -dc sources/diff-2.4.0-test2-ac1-rmk2-np3.gz | patch -p1 -d src/linux

#mkdir -p $ARM_INSTALL_DIR/arm-linux/include

cd $ARM_WORK_DIR/src/linux

make assabet_config

make menuconfig

Press ESC twice, then ENTER

make dep

#cp -dR include/asm-arm $ARM_INSTALL_DIR/arm-linux/include/asm

#cp -dR include/linux $ARM_INSTALL_DIR/arm-linux/include/linux

cd $ARM_WORK_DIR/build

mkdir -p binutils gcc glibc

cd $ARM_WORK_DIR/build/binutils

../../src/binutils-2.10/configure --target=arm-linux --prefix=$ARM_INSTALL_DIR

make

make install

cd $ARM_WORK_DIR/build/gcc

../../src/gcc-2.95.2/configure --target=arm-linux --prefix=$ARM_INSTALL_DIR --with-cpu=strongarm --disable-languages --with-headers=$ARM_WORK_DIR/src/linux/include

make -i

make -i install

cd $ARM_WORK_DIR/build/glibc

CC=arm-linux-gcc ../../src/glibc-2.1.3/configure arm-linux --enable-add-ons --prefix=$ARM_INSTALL_DIR/arm-linux --with-headers=$ARM_WORK_DIR/src/linux/include

make

make install

cd $ARM_WORK_DIR/build/gcc

gzip -dc ../../sources/gcc-2.95.2-diff-991022-inhibit_libc.gz | patch -R -d ../../src/gcc-2.95.2 -p0

../../src/gcc-2.95.2/configure --target=arm-linux --prefix=$ARM_INSTALL_DIR --with-cpu=strongarm --enable-languages=c++ --with-headers=../../src/linux/include

make -i

make -i install

3.3 Native Compilers

Once you have a StrongARM system up and running with Linux, you can use it to compile programs, instead of having to use a cross compiler. The easiest way to do this is to use a host system (such as a Netwinder) that is designed to be used as a desktop system. It ships with all of the development tools that you need already installed. If you need to install this toolchain on a system other than a Netwinder (such as an Assabet or iPAQ), you can obtain RPM’s from: http://www.netwinder.org/tools.html
3.4 Library Issues

There are a few problems that one will run into with using dynamic libraries under ARM-Linux. First of all, the standard C library used by Linux is glibc. This can be compiled either as a “versioned library” or a “non-versioned library.” I’m not sure what specifically the differences are; however programs that were linked with a versioned glibc can not be used with a non-versioned glibc, and vice versa.

Currently, the standard netwinder distribution uses a non-versioned glibc. The standard cross tools, the iPAQ distribution, the ramdisks released by Nicolas Pitre, CMU, and Justin Seger, and most other systems use a versioned glibc. According to people at netwinder.org, the Netwinder is planning on switching to a versioned glibc. Once this happens, this will no longer be an issue.

The other big problem with dynamic libraries under ARM-Linux relates to “relocs.” I don’t understand this in great detail; however more information is available about this here: http://www.netwinder.org/~scottb/notes/Elf-Design.html
4. Terminal Software

The standard way to interact with Linux running on an Assabet is over the serial port. This requires a terminal emulator running on the host computer. This can be done on a Linux machine or a Windows machine (or any other machine); however this document only addresses using a Linux machine.

The standard Linux terminal program is called ‘minicom’. Using it is fairly straightforward, and this document highlights some of the features that you will need to use.

First of all, you will need to configure minicom. As ‘root’ on your Linux system,
first type “minicom -s”.

That should bring up the following screen:

 ┌─────[configuration]──────┐

 │ Filenames and paths │

 │ File transfer protocols │

 │ Serial port setup │

 │ Modem and dialing │

 │ Screen and keyboard │

 │ Save setup as dfl │

 │ Save setup as.. │

 │ Exit │

 │ Exit from Minicom │

 └──────────────────────────┘
Select “Serial port setup” from the menu (using the arrow keys to highlight it, then enter to select it).

Press “A” to edit the “Serial device”

This should be changed to a Linux device name from the following list:

	Com Port
	Linux device name

	COM1
	/dev/ttyS0

	COM2
	/dev/ttyS1

	COM3
	/dev/ttyS2

	COM4
	/dev/ttyS3

Press ENTER after typing in the device name. Make sure that “Bps/Par/Bits” is set to “9600 8N1).

Also make sure that “Hardware Flow Control” and “Software Flow Control” are set to No.

When you’re done with this screen, it should look something like this:

 ┌───┐

 │ A - Serial Device : /dev/ttyS1 │

 │ B - Lockfile Location : /var/lock │

 │ C - Callin Program : │

 │ D - Callout Program : │

 │ E - Bps/Par/Bits : 9600 8N1 │

 │ F - Hardware Flow Control : No │

 │ G - Software Flow Control : No │

 │ │

 │ Change which setting? │

 └───┘
Press enter when you’re done to return to the main screen.

Select “Save setup as dfl” and then “Exit from Minicom”

Minicom is now properly configured. To start minicom in the future, use the command ‘minicom -o’. The ‘-o’ instructs minicom NOT to initialize the modem (which is a good thing since an Assabet isn’t a modem.)

Inside minicom there are many key sequences that can be pressed to perform different functions. They are all prefixed by ^A (the carrot in front of the A implies that you should press control-A).

Here is a chart listing the more commonly used features:

	Key Sequence
	Function

	^A then Z
	Help: Show a listing of all minicom commands

	^A then P
	Adjust comm. parameters (baud rate, etc…)

	^A then O
	Configure minicom (same as minicom –s)

	^A then Q
	Quit with no reset (this is the preferred way to exit)

	^A then ^A
	Actually transmit a ^A

5. Bootloader Issues

There are presently three major bootloaders that can be used to boot Linux on an Assabet. Angel (shipped with Assabet kits), Blob (available from http://www.lart.tudelft.nl/lartware/blob/), and Cygmon (which is part of the Cygnus tools distribution).

5.1 Angel Debug Monitor

This is the standard way that Linux has been booted on StrongARM systems in the past. The major problem with using Angel is that it can not boot a system out of flash. A kernel and a ramdisk must be downloaded via a serial port each time that the system is started. Angel can not be used to debug a Linux kernel because the first thing that Linux does while booting is to kill Angel.

To use Angel to boot an Assabet system, you must have a PC running Linux to run the “angelboot” program (available from: ftp://ftp.netwinder.org/users/n/nico).

The easiest way to use angelboot is to download the pre-built angel kit.

It is available at: ftp://ftp.netwinder.org/users/c/chagas/arm-linux-assabet/angel-kit-assabet-1.3.tar.gz
or \\sasyseng\www\arm-linux\file-archive\angel-kit-assabet-1.3.tar.gz
On a PC Linux system, use the following procedure to use the kit:

1) Download the kit

2) Extract it (tar -xzvf angel-kit-assabet-1.3.tar.gz)

3) cd angel-kit

4) If you board doesn’t have angel on it, run “./Jflash-linux angel208a.bin”

5) This is configured to use COM2 (ttyS1) by default. If you need to use another COM port, edit ‘.angelrc’ and change the “device /dev/ttyS1” line to match your serial port.

6) Run it (./angelboot)

Angelboot will then download the kernel and ramdisk to your system. It then brings up a minicom window to show you the linux boot progress.

5.2 Blob – The LART Boot Loader

Blob (http://www.lart.tudelft.nl/lartware/blob/) was developed by Jan-Derk Bakker and Erik Mouw for the LART project. LART is designed to boot a system out of flash. It reads the kernel and ramdisk from predefined locations in flash, and then it jumps to the Linux kernel entrypoint.

You can also use blob to boot images that are not in flash. It supports file transfers by sending it a uuencoded file over the serial port.

The easiest way to load blob on an Assabet system is to use a pre-built blob-kit, available from:

ftp://ftp.netwinder.org/users/j/jseger/blob-kit-assabet-1.3.tar.gz
or \\sasyseng\www\arm-linux\file-archive\blob-kit-assabet-1.3.tar.gz
On a PC Linux system, use the following procedure to use the kit:

1) Download the kit

2) Extract it (tar -xzvf blob-kit-assabet-1.3.tar.gz)

3) cd blob-kit

4) ./Jflash-linux blob-linux

This will take a while to burn to flash. Once it is there, the Assabet will automatically reboot and start Linux. Use ‘minicom’ to view the serial port console.

The procedure for rebuilding the blob kit is documented in the README.txt file that comes with it.

To boot a new kernel from the blob (without loading it into flash), perform the following procedure:

1) Start minicom

2) Reset the Assabet board (either disconnect power and then reconnect it, or press the reset button).

3) Watch the bootloader startup. When it says press any key to stop, press any key.

4) In another window, take the ramdisk or kernel that you’re planning to use and perform one of the following (as appropriate):
uuencode ramdisk.gz ramdisk.gz > ramdisk.uu
uuencode zImage zImage > zImage.uu
NOTE: The name of the original file (ramdisk.gz or zImage) is used twice intentionally. Read the uuencode man page (man uuencode) for more information.

5) In the minicom window, type ‘download kernel’ (or ‘download ramdisk’ as appropriate)

6) Once you start the download, you must perform the following two steps quickly, or the download will time out. In the minicom window, change the baud rate to 115200 (^A, then P, then O, then enter)

7) In the other window, type ‘cat ramdisk.uu > /dev/ttyS1’
NOTE: Replace ramdisk.uu with zImage.uu and/or /dev/ttyS1 with /dev/ttyS0 as appropriate

8) If all went well, then download will proceed normally (you will see a string of periods start to appear on your screen. If they seem to stop at the end of the screen, don’t worry, ‘blob’ doesn’t handle linewraps correctly). When it is finished, you must change the baudrate back to 9600 (^A, then P, then I, then enter).

9) You can perform the above steps again if you wish to download both a kernel and a ramdisk. Whenever you’re ready to boot the new kernel/ramdisk, type boot.
NOTE: When you type boot, it will load the kernel and/or ramdisk out of flash if you haven’t successfully downloaded a new one.

6. Kernel Issues

The Linux kernel can be quite a bit to work with. The sources for the kernel alone are over 20MB compressed. This section provides a short overview over many of the kernel issues specific to the support of SA11XX systems using the kernel.

6.1 Version Numbering System

The first trick with the Linux kernel is understanding the version numbering system. For example, the kernel version included in rev 1.3 of the angel and blob kits is “linux-2.4.0-test5-rmk1-np1”.

This can be broken down as follows:

	linux-
	The operating system

	2.4.0-
	The main version number (more on this later)

	test5-
	This is the 5th test release of 2.4.0

	rmk1-
	This is Russell M. King’s 1st patch revision to the 5th test release of 2.4.0

	np1
	This is Nicolas Pitre’s 1st patch revision to Russell M. King’s 1st patch revision to the 5th test release of 2.4.0

The primary Linux version number (2.4.0) can be broken into three parts:

MAJOR: 2

MINOR: 4

PATCHLEVEL: 0

The major number is only incremented for a very major change. The minor number is handled rather strangely for Linux. An odd number is a development release, while an even number is a production release. Once a development tree is ready to move into production release, a series of “test” releases are done. The tree is currently in such a state, which is why we are seeing many “2.4.0-test” releases. Once the testing process is complete and the system is deemed to be of production quality, there will be two new kernel release lines. One will be 2.4.X. Those are recommended to be used for production uses. The other will be 2.5.X which will be intended for developers. It is unclear which will be best for StrongARM users until we see where the Linux developers choose to work. SA2 support will probably only be in 2.5.X, at least initially.

6.2 Russell M. King

Russell is the head of the ARM-Linux project (http://www.arm.linux.org.uk/). All ARM related patches to Linux are supposed to go through him. Because the latest ARM work isn’t necessarily ready for inclusion in the main Linux tree, Russell maintains a patch that can be applied to the latest kernel sources. He also maintains a system so that developers can submit patches to him for inclusion into his large patch. The ARM Linux Patch State System (http://www.arm.linux.org.uk/developer/patches/) shows the status of all patches that he has received.

6.3 Nicolas Pitre

Nicolas maintains the SA11XX patch for Linux. This patch must be applied to a source tree AFTER Russell’s patch. Similarly to Russell’s patches, Nicolas’ patch contains SA11XX work that isn’t necessarily ready for inclusion in Russell’s patches. Any SA11XX related patches should be sent to Nicolas, not Russell.

6.4 Compilation Instructions

Compiling the kernel is relatively straightforward. The following sample steps assume that you are attempting to build the 2.4.0-test5-rmk1-np1 release. They also assume that you have the arm-linux-cross tools installed in /usr/local/arm-linux/bin (the default if you install the RPM’s).

1) Download the three source files that you need (linux-2.4.0-test5.tar.gz, patch-2.4.0-test5-rmk1.gz, diff-2.4.0-test5-rmk1-np1.gz).

2) PATH=/usr/local/arm-linux/bin:$PATH (this adds the cross-tools to the current PATH)

3) tar –xzvf linux-2.4.0-test5.tar.gz (this extracts the Linux source tree)

4) cd linux

5) gzip –dc ../patch-2.4.0-test5-rmk1.gz | patch –p1 (This applies Russell’s patch)

6) gzip –dc ../diff-2.4.0-test5-rmk1-np1.gz | patch –p1 (This applies Nicholas’ patch)

7) make assabet_config (this selects the default Assabet configuration)

8) make menuconfig (this brings up a graphical configuration utility for the kernel)
This should pull up a screen that looks like the following:
 ┌─────────────────────────────── Main Menu ────────────────────────────────┐
 │ Arrow keys navigate the menu. <Enter> selects submenus --->. │
 │ Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, │
 │ <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help. │
 │ Legend: [*] built-in [] excluded <M> module < > module capable │
 │ ┌──┐ │
 │ │ Code maturity level options ---> │ │
 │ │ Loadable module support ---> │ │
 │ │ System Type ---> │ │
 │ │ General setup ---> │ │
 │ │ Parallel port support ---> │ │
 │ │ Memory Technology Devices (MTD) ---> │ │
 │ │ Plug and Play configuration ---> │ │
 │ │ Block devices ---> │ │
 │ │ Networking options ---> │ │
 │ │ Network device support ---> │ │
 │ │ Amateur Radio support ---> │ │
 │ │ IrDA (infrared) support ---> │ │
 │ │ ATA/IDE/MFM/RLL support ---> │ │
 │ │ SCSI support ---> │ │
 │ │ I2O device support ---> │ │
 │ │ ISDN subsystem ---> │ │
 │ │ Character devices ---> │ │
 │ │ File systems ---> │ │
 │ │ Console drivers ---> │ │
 │ │ Sound ---> │ │
 │ │ USB support ---> │ │
 │ │ Kernel hacking ---> │ │
 │ │ --- │ │
 │ │ Load an Alternate Configuration File │ │
 │ │ Save Configuration to an Alternate File │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ └──┘ │
 ├──┤
 │ <Select> < Exit > < Help > │
 └──┘
9) Change any options that you would like to configure in your kernel. To open a submenu, select it with the arrow keys, and then press enter. The options that were used in the angel-kit and blob-kit’s are documented in their README.txt files.

10) When you’re done, select exit.

11) You will be asked if you want to save your new kernel configuration, select yes.

12) make depend (builds the required dependencies files)

13) make zImage (builds the kernel)

14) Your compiled kernel is now in arch/arm/boot/zImage

7. Ramdisk Issues

The “ramdisk” is the initial filesystem used by the kernel. It is loaded from a source (either flash or downloaded form the serial port) into memory. It is then decompressed, and mounted as the root directory (“/”).

There are currently three easily usable ramdisks available for the Assabet.

1) Nicolas Pitre’s ramdisk (ftp://ftp.netwinder.org/users/n/nico/ramdisk.gz). This contains all of the basic utilities you need to have a minimal Linux system up and running

2) CMU’s ramdisk (see their webpage to download). This is based on Nicolas’ ramdisk, so it has all of the same utilities that his does. It adds PCMCIA support.

3) Justin Seger’s ramdisk (available in the blob or angel kits) is based on CMU’s. It adds support for doing DHCP and NFS.

If you’d like to modify a ramdisk, perform the following steps:

1) gunzip ramdisk.gz (this uncompresses the ramdisk)

2) mount –o loop ramdisk /mnt (this uses a ‘loop’ device to mount the image in the /mnt directory)

3) Do whatever work you want to do to the ramdisk. It’s root directory appears at /mnt on your host system

4) umount /mnt (unmounts the ramdisk, VERY important step)

5) gzip ramdisk (compresses the newly modified ramdisk)

That’s all there is to it.

NOTE: If you upgrade the kernel version, you will need to update the ramdisk. The PCMCIA utilities (specifically cardmgr) except the directory /lib/modules/KERNEL_VERSION to exist. On the ramdisk in the rev 1.3 kits, the directory is called ‘/lib/modules/2.4.0-test5-rmk1-np1’. Make sure that you create a directory for your kernel version.

8. Internal Resources

We have a few useful internal resources for doing Linux development.

1) Jason’s File Archive
\\sasyseng\www\arm-linux\file-archive
This contains copies of many available Linux source files and kits.

2) Jason’s Linux Box
Jason has a Linux server for developers to use. It is lnux0.hd.intel.com
Contact Jason for more information

3) Discussion forums. There is an ARM linux discussion forum on the internal website (http://sasyseng.hd.intel.com) with lots of useful information.

4) NFS server. Any system on the 10.127.143.* or 10.127.203.* subnet can access an NFS server that is setup on lnux0. This contains various directory trees that are quite useful for quick development. Simply boot up your Assabet with an Ethernet card in it. Login as root. And mount the file system (i.e. mount lnux0.hd.intel.com:/a/images /mnt). This provides you with a wide variety of trees to work with. Read the README.txt file in that directory for more info.

9. Personal Contact Information

I’m happy to answer any questions that I can while I’m away. The preferred contact method is via email.

You can reach me at any of the following:

Justin Seger

161 Andrews Memorial Drive

Rochester, NY 14623

(716) 292-7650

Cell: (716) 615-9511

Email: jseger@scds.com
